pCMV_BE4max Citations (28)
Originally described in: Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction.Koblan LW, Doman JL, Wilson C, Levy JM, Tay T, Newby GA, Maianti JP, Raguram A, Liu DR Nat Biotechnol. 2018 May 29. pii: nbt.4172. doi: 10.1038/nbt.4172. PubMed Journal
Articles Citing pCMV_BE4max
Articles |
---|
Improved base editor for efficient editing in GC contexts in rabbits with an optimized AID-Cas9 fusion. Liu Z, Shan H, Chen S, Chen M, Zhang Q, Lai L, Li Z. FASEB J. 2019 Aug;33(8):9210-9219. doi: 10.1096/fj.201900476RR. Epub 2019 May 9. PubMed |
Highly efficient base editing with expanded targeting scope using SpCas9-NG in rabbits. Liu Z, Shan H, Chen S, Chen M, Song Y, Lai L, Li Z. FASEB J. 2020 Jan;34(1):588-596. doi: 10.1096/fj.201901587R. Epub 2019 Nov 26. PubMed |
Efficient base editing with high precision in rabbits using YFE-BE4max. Liu Z, Chen S, Shan H, Jia Y, Chen M, Song Y, Lai L, Li Z. Cell Death Dis. 2020 Jan 20;11(1):36. doi: 10.1038/s41419-020-2244-3. PubMed |
A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects.
Zuo E, Sun Y, Yuan T, He B, Zhou C, Ying W, Liu J, Wei W, Zeng R, Li Y, Yang H.
Nat Methods. 2020 May 18. pii: 10.1038/s41592-020-0832-x. doi: 10.1038/s41592-020-0832-x.
PubMed
Associated Plasmids |
A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing.
Grunewald J, Zhou R, Lareau CA, Garcia SP, Iyer S, Miller BR, Langner LM, Hsu JY, Aryee MJ, Joung JK.
Nat Biotechnol. 2020 Jun 1. pii: 10.1038/s41587-020-0535-y. doi: 10.1038/s41587-020-0535-y.
PubMed
Associated Plasmids |
Base editors for simultaneous introduction of C-to-T and A-to-G mutations.
Sakata RC, Ishiguro S, Mori H, Tanaka M, Tatsuno K, Ueda H, Yamamoto S, Seki M, Masuyama N, Nishida K, Nishimasu H, Arakawa K, Kondo A, Nureki O, Tomita M, Aburatani H, Yachie N.
Nat Biotechnol. 2020 Jun 1. pii: 10.1038/s41587-020-0509-0. doi: 10.1038/s41587-020-0509-0.
PubMed
Associated Plasmids |
BE4max and AncBE4max Are Efficient in Germline Conversion of C:G to T:A Base Pairs in Zebrafish. Carrington B, Weinstein RN, Sood R. Cells. 2020 Jul 14;9(7). pii: cells9071690. doi: 10.3390/cells9071690. PubMed |
CRISPR Start-Loss: A Novel and Practical Alternative for Gene Silencing through Base-Editing-Induced Start Codon Mutations. Chen S, Xie W, Liu Z, Shan H, Chen M, Song Y, Yu H, Lai L, Li Z. Mol Ther Nucleic Acids. 2020 Sep 4;21:1062-1073. doi: 10.1016/j.omtn.2020.07.037. Epub 2020 Jul 31. PubMed |
Small-molecule compounds boost genome-editing efficiency of cytosine base editor. Zhao T, Li Q, Zhou C, Lv X, Liu H, Tu T, Tang N, Cheng Y, Liu X, Liu C, Zhao J, Song Z, Wang H, Li J, Gu F. Nucleic Acids Res. 2021 Sep 7;49(15):8974-8986. doi: 10.1093/nar/gkab645. PubMed |
Reduced off-target effect of NG-BE4max by using NG-HiFi system. Shan H, Liu Z, Jia Y, Chen S, Chen M, Song Y, Sui T, Lai L, Li Z. Mol Ther Nucleic Acids. 2021 May 19;25:168-172. doi: 10.1016/j.omtn.2021.05.012. eCollection 2021 Sep 3. PubMed |
Controllable genome editing with split-engineered base editors.
Berrios KN, Evitt NH, DeWeerd RA, Ren D, Luo M, Barka A, Wang T, Bartman CR, Lan Y, Green AM, Shi J, Kohli RM.
Nat Chem Biol. 2021 Dec;17(12):1262-1270. doi: 10.1038/s41589-021-00880-w. Epub 2021 Oct 18.
PubMed
Associated Plasmids |
A general theoretical framework to design base editors with reduced bystander effects. Wang Q, Yang J, Zhong Z, Vanegas JA, Gao X, Kolomeisky AB. Nat Commun. 2021 Nov 11;12(1):6529. doi: 10.1038/s41467-021-26789-5. PubMed |
Inhibition of base editors with anti-deaminases derived from viruses. Liu Z, Chen S, Lai L, Li Z. Nat Commun. 2022 Feb 1;13(1):597. doi: 10.1038/s41467-022-28300-0. PubMed |
Efficient C-to-G Base Editing with Improved Target Compatibility Using Engineered Deaminase-nCas9 Fusions. Chen S, Liu Z, Lai L, Li Z. CRISPR J. 2022 Jun;5(3):389-396. doi: 10.1089/crispr.2021.0124. Epub 2022 Mar 2. PubMed |
Efficient multinucleotide deletions using deaminase-Cas9 fusions in human cells. Chen S, Liu Z, Yu H, Lai L, Li Z. J Genet Genomics. 2022 Oct;49(10):927-933. doi: 10.1016/j.jgg.2022.03.007. Epub 2022 Apr 11. PubMed |
Eliminating predictable DNA off-target effects of cytosine base editor by using dual guiders including sgRNA and TALE. Zhou J, Liu Y, Wei Y, Zheng S, Gou S, Chen T, Yang Y, Lan T, Chen M, Liao Y, Zhang Q, Tang C, Liu Y, Wu Y, Peng X, Gao M, Wang J, Zhang K, Lai L, Zou Q. Mol Ther. 2022 Jul 6;30(7):2443-2451. doi: 10.1016/j.ymthe.2022.04.010. Epub 2022 Apr 20. PubMed |
Multiplex base- and prime-editing with drive-and-process CRISPR arrays.
Yuan Q, Gao X.
Nat Commun. 2022 May 19;13(1):2771. doi: 10.1038/s41467-022-30514-1.
PubMed
Associated Plasmids |
PAM-flexible dual base editor-mediated random mutagenesis and self-activation strategies to improve CRISPRa potency. Lau CH, Huang S, Lam RHW, Tin C. Mol Ther Methods Clin Dev. 2022 May 29;26:26-37. doi: 10.1016/j.omtm.2022.05.005. eCollection 2022 Sep 8. PubMed |
Optimization of the base editor BE4max in chicken somatic cells. Xu T, Zhong J, Huang Z, Yu L, Zheng J, Xie L, Sun L, Liu X, Lu Y. Poult Sci. 2022 Dec;101(12):102174. doi: 10.1016/j.psj.2022.102174. Epub 2022 Sep 13. PubMed |
Delivery of CRISPR/Cas9 Plasmid DNA by Hyperbranched Polymeric Nanoparticles Enables Efficient Gene Editing. Xiu K, Saunders L, Wen L, Ruan J, Dong R, Song J, Yang D, Zhang J, Xu J, Chen YE, Ma PX. Cells. 2022 Dec 30;12(1):156. doi: 10.3390/cells12010156. PubMed |
High-efficiency editing in hematopoietic stem cells and the HUDEP-2 cell line based on in vitro mRNA synthesis. Papaioannou NY, Patsali P, Naiisseh B, Papasavva PL, Koniali L, Kurita R, Nakamura Y, Christou S, Sitarou M, Mussolino C, Cathomen T, Kleanthous M, Lederer CW. Front Genome Ed. 2023 Mar 8;5:1141618. doi: 10.3389/fgeed.2023.1141618. eCollection 2023. PubMed |
Base editing strategies to convert CAG to CAA diminish the disease-causing mutation in Huntington's disease. Choi DE, Shin JW, Zeng S, Hong EP, Jang JH, Loupe JM, Wheeler VC, Stutzman HE, Kleinstiver BP, Lee JM. bioRxiv. 2023 Apr 28:2023.04.28.538700. doi: 10.1101/2023.04.28.538700. Preprint. PubMed |
An AlphaFold2 map of the 53BP1 pathway identifies a direct SHLD3-RIF1 interaction critical for shieldin activity. Sifri C, Hoeg L, Durocher D, Setiaputra D. EMBO Rep. 2023 Aug 3;24(8):e56834. doi: 10.15252/embr.202356834. Epub 2023 Jun 12. PubMed |
APOBEC Reporter Systems for Evaluating diNucleotide Editing Levels.
Rieffer AE, Chen Y, Salamango DJ, Moraes SN, Harris RS.
CRISPR J. 2023 Oct;6(5):430-446. doi: 10.1089/crispr.2023.0027. Epub 2023 Sep 6.
PubMed
Associated Plasmids |
Genotoxic effects of base and prime editing in human hematopoietic stem cells. Fiumara M, Ferrari S, Omer-Javed A, Beretta S, Albano L, Canarutto D, Varesi A, Gaddoni C, Brombin C, Cugnata F, Zonari E, Naldini MM, Barcella M, Gentner B, Merelli I, Naldini L. Nat Biotechnol. 2023 Sep 7. doi: 10.1038/s41587-023-01915-4. PubMed |
Context base editing for splice correction of IVSI-110 beta-thalassemia. Naiisseh B, Papasavva PL, Papaioannou NY, Tomazou M, Koniali L, Felekis X, Constantinou CG, Sitarou M, Christou S, Kleanthous M, Lederer CW, Patsali P. Mol Ther Nucleic Acids. 2024 Mar 30;35(2):102183. doi: 10.1016/j.omtn.2024.102183. eCollection 2024 Jun 11. PubMed |
Sensitive bispecific chimeric T cell receptors for cancer therapy. Simon S, Bugos G, Prins R, Rajan A, Palani A, Heyer K, Stevens A, Zeng L, Thompson K, Price JP, Kluesner MK, Jaeger-Ruckstuhl C, Shabaneh TB, Olson JM, Su X, Riddell SR. Res Sq [Preprint]. 2024 Apr 22:rs.3.rs-4253777. doi: 10.21203/rs.3.rs-4253777/v1. PubMed |
Base editing strategies to convert CAG to CAA diminish the disease-causing mutation in Huntington's disease. Choi DE, Shin JW, Zeng S, Hong EP, Jang JH, Loupe JM, Wheeler VC, Stutzman HE, Kleinstiver B, Lee JM. Elife. 2024 Jun 13;12:RP89782. doi: 10.7554/eLife.89782. PubMed |
If you have published an article using this material, please email us at [email protected] to have your article added to this page.