pCRISPR Citations (30)
Originally described in: RNA-guided editing of bacterial genomes using CRISPR-Cas systems.Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA Nat Biotechnol. 2013 Jan 29. doi: 10.1038/nbt.2508. PubMed Journal
Articles Citing pCRISPR
Articles |
---|
Coupling the CRISPR/Cas9 System with Lambda Red Recombineering Enables Simplified Chromosomal Gene Replacement in Escherichia coli. Pyne ME, Moo-Young M, Chung DA, Chou CP. Appl Environ Microbiol. 2015 Aug 1;81(15):5103-14. doi: 10.1128/AEM.01248-15. Epub 2015 May 22. PubMed |
Covalent Modification of Bacteriophage T4 DNA Inhibits CRISPR-Cas9. Bryson AL, Hwang Y, Sherrill-Mix S, Wu GD, Lewis JD, Black L, Clark TA, Bushman FD. MBio. 2015 Jun 16;6(3):e00648. doi: 10.1128/mBio.00648-15. PubMed |
CRISPR Immunological Memory Requires a Host Factor for Specificity. Nunez JK, Bai L, Harrington LB, Hinder TL, Doudna JA. Mol Cell. 2016 Jun 16;62(6):824-33. doi: 10.1016/j.molcel.2016.04.027. Epub 2016 May 19. PubMed |
Development of a CRISPR-Cas9 toolkit for comprehensive engineering of Bacillus subtilis.
Westbrook AW, Moo-Young M, Chou CP.
Appl Environ Microbiol. 2016 Jun 3. pii: AEM.01159-16.
PubMed
Associated Plasmids |
Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9. Chung ME, Yeh IH, Sung LY, Wu MY, Chao YP, Ng IS, Hu YC. Biotechnol Bioeng. 2017 Jan;114(1):172-183. doi: 10.1002/bit.26056. Epub 2016 Aug 5. PubMed |
A CRISPR-Cas9 Assisted Non-Homologous End-Joining Strategy for One-step Engineering of Bacterial Genome. Su T, Liu F, Gu P, Jin H, Chang Y, Wang Q, Liang Q, Qi Q. Sci Rep. 2016 Nov 24;6:37895. doi: 10.1038/srep37895. PubMed |
An Eight-Residue Deletion in Escherichia coli FabG Causes Temperature-Sensitive Growth and Lipid Synthesis Plus Resistance to the Calmodulin Inhibitor Trifluoperazine. Srinivas S, Cronan JE. J Bacteriol. 2017 Apr 25;199(10). pii: e00074-17. doi: 10.1128/JB.00074-17. Print 2017 May 15. PubMed |
Genome-Wide Abolishment of Mobile Genetic Elements Using Genome Shuffling and CRISPR/Cas-Assisted MAGE Allows the Efficient Stabilization of a Bacterial Chassis. Umenhoffer K, Draskovits G, Nyerges A, Karcagi I, Bogos B, Timar E, Csorgo B, Herczeg R, Nagy I, Feher T, Pal C, Posfai G. ACS Synth Biol. 2017 Apr 26. doi: 10.1021/acssynbio.6b00378. PubMed |
Large scale validation of an efficient CRISPR/Cas-based multi gene editing protocol in Escherichia coli. Zerbini F, Zanella I, Fraccascia D, Konig E, Irene C, Frattini LF, Tomasi M, Fantappie L, Ganfini L, Caproni E, Parri M, Grandi A, Grandi G. Microb Cell Fact. 2017 Apr 24;16(1):68. doi: 10.1186/s12934-017-0681-1. PubMed |
Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis. Wu MY, Sung LY, Li H, Huang CH, Hu YC. ACS Synth Biol. 2017 Dec 15;6(12):2350-2361. doi: 10.1021/acssynbio.7b00251. Epub 2017 Sep 12. PubMed |
Efficient engineering of chromosomal ribosome binding site libraries in mismatch repair proficient Escherichia coli. Oesterle S, Gerngross D, Schmitt S, Roberts TM, Panke S. Sci Rep. 2017 Sep 26;7(1):12327. doi: 10.1038/s41598-017-12395-3. PubMed |
Combining orthogonal CRISPR and CRISPRi systems for genome engineering and metabolic pathway modulation in Escherichia coli. Sung LY, Wu MY, Lin MW, Hsu MN, Truong VA, Shen CC, Tu Y, Hwang KY, Tu AP, Chang YH, Hu YC. Biotechnol Bioeng. 2019 May;116(5):1066-1079. doi: 10.1002/bit.26915. Epub 2019 Feb 8. PubMed |
Construction of a bacterial surface display system based on outer membrane protein F. Chen T, Wang K, Chi X, Zhou L, Li J, Liu L, Zheng Q, Wang Y, Yu H, Gu Y, Zhang J, Li S, Xia N. Microb Cell Fact. 2019 Apr 11;18(1):70. doi: 10.1186/s12934-019-1120-2. PubMed |
A Two-Enzyme Adaptive Unit within Bacterial Folate Metabolism.
Schober AF, Mathis AD, Ingle C, Park JO, Chen L, Rabinowitz JD, Junier I, Rivoire O, Reynolds KA.
Cell Rep. 2019 Jun 11;27(11):3359-3370.e7. doi: 10.1016/j.celrep.2019.05.030.
PubMed
Associated Plasmids |
Rapid Evolution of Reduced Susceptibility against a Balanced Dual-Targeting Antibiotic through Stepping-Stone Mutations. Szili P, Draskovits G, Revesz T, Bogar F, Balogh D, Martinek T, Daruka L, Spohn R, Vasarhelyi BM, Czikkely M, Kintses B, Grezal G, Ferenc G, Pal C, Nyerges A. Antimicrob Agents Chemother. 2019 Aug 23;63(9). pii: AAC.00207-19. doi: 10.1128/AAC.00207-19. Print 2019 Sep. PubMed |
Phage-based biosensors: in vivo analysis of native T4 phage promoters to enhance reporter enzyme expression. Duong MM, Carmody CM, Nugen SR. Analyst. 2020 Sep 28;145(19):6291-6297. doi: 10.1039/d0an01413c. PubMed |
Optimization of T4 phage engineering via CRISPR/Cas9. Duong MM, Carmody CM, Ma Q, Peters JE, Nugen SR. Sci Rep. 2020 Oct 26;10(1):18229. doi: 10.1038/s41598-020-75426-6. PubMed |
A simplified strategy for titrating gene expression reveals new relationships between genotype, environment, and bacterial growth. Mathis AD, Otto RM, Reynolds KA. Nucleic Acids Res. 2021 Jan 11;49(1):e6. doi: 10.1093/nar/gkaa1073. PubMed |
A multiplex CRISPR interference tool for virulence gene interrogation in Legionella pneumophila. Ellis NA, Kim B, Tung J, Machner MP. Commun Biol. 2021 Feb 4;4(1):157. doi: 10.1038/s42003-021-01672-7. PubMed |
Role of AmpG in the resistance to beta-lactam agents, including cephalosporins and carbapenems: candidate for a novel antimicrobial target. D'Souza R, Nguyen LP, Pinto NA, Lee H, Vu TN, Kim H, Cho HS, Yong D. Ann Clin Microbiol Antimicrob. 2021 Jun 16;20(1):45. doi: 10.1186/s12941-021-00446-7. PubMed |
Multiple Stepwise Gene Knockout Using CRISPR/Cas9 in Escherichia coli. Konig E, Zerbini F, Zanella I, Fraccascia D, Grandi G. Bio Protoc. 2018 Jan 20;8(2):e2688. doi: 10.21769/BioProtoc.2688. eCollection 2018 Jan 20. PubMed |
Lowering DNA binding affinity of SssI DNA methyltransferase does not enhance the specificity of targeted DNA methylation in E. coli. Slaska-Kiss K, Zsibrita N, Koncz M, Albert P, Csabradi A, Szentes S, Kiss A. Sci Rep. 2021 Jul 27;11(1):15226. doi: 10.1038/s41598-021-94528-3. PubMed |
Targeted chromosomal Escherichia coli:dnaB exterior surface residues regulate DNA helicase behavior to maintain genomic stability and organismal fitness. Behrmann MS, Perera HM, Hoang JM, Venkat TA, Visser BJ, Bates D, Trakselis MA. PLoS Genet. 2021 Nov 12;17(11):e1009886. doi: 10.1371/journal.pgen.1009886. eCollection 2021 Nov. PubMed |
Phage anti-CBASS and anti-Pycsar nucleases subvert bacterial immunity. Hobbs SJ, Wein T, Lu A, Morehouse BR, Schnabel J, Leavitt A, Yirmiya E, Sorek R, Kranzusch PJ. Nature. 2022 May;605(7910):522-526. doi: 10.1038/s41586-022-04716-y. Epub 2022 Apr 8. PubMed |
CRISPR-Cas9 Based Bacteriophage Genome Editing. Zhang X, Zhang C, Liang C, Li B, Meng F, Ai Y. Microbiol Spectr. 2022 Aug 31;10(4):e0082022. doi: 10.1128/spectrum.00820-22. Epub 2022 Jul 26. PubMed |
A Polyketide Synthetase Gene Cluster Is Responsible for Antibacterial Activity of Burkholderia contaminans MS14. Deng P, Jia J, Foxfire A, Baird SM, Smith LJ, Lu SE. Phytopathology. 2023 Jan;113(1):11-20. doi: 10.1094/PHYTO-03-22-0106-R. Epub 2023 Jan 13. PubMed |
Molecular mechanism of lipopolysaccharide (LPS) in promoting biomineralization on bacterial surface. Gong Z, Guo J, Li Q, Xie H. Biochim Biophys Acta Gen Subj. 2023 Mar;1867(3):130305. doi: 10.1016/j.bbagen.2023.130305. Epub 2023 Jan 5. PubMed |
Systematically attenuating DNA targeting enables CRISPR-driven editing in bacteria. Collias D, Vialetto E, Yu J, Co K, Almasi EDH, Ruttiger AS, Achmedov T, Strowig T, Beisel CL. Nat Commun. 2023 Feb 8;14(1):680. doi: 10.1038/s41467-023-36283-9. PubMed |
Ubiquitin-like conjugation by bacterial cGAS enhances anti-phage defence. Jenson JM, Li T, Du F, Ea CK, Chen ZJ. Nature. 2023 Apr;616(7956):326-331. doi: 10.1038/s41586-023-05862-7. Epub 2023 Feb 27. PubMed |
Monomeric streptavidin phage display allows efficient immobilization of bacteriophages on magnetic particles for the capture, separation, and detection of bacteria. Carmody CM, Nugen SR. Sci Rep. 2023 Sep 27;13(1):16207. doi: 10.1038/s41598-023-42626-9. PubMed |
If you have published an article using this material, please email us at [email protected] to have your article added to this page.