ScEnSor Kit
(Kit #
1000000215
)
Depositing Lab: Lisbeth Olsson
The 36 plasmid ScEnSor kit allows the user to either: (1) use just the Biosensor Module in an already-developed Saccharomyces cerevisiae strain whose intracellular environment has to be further characterized; (2) use just the Genome-Integration Module to develop a new strain introducing new expression cassettes into the genome; (3) use both modules to develop a new strain and characterize its intracellular environment.
This kit consists of one 96-well plate, and will be shipped as bacterial glycerol stocks. Individual plasmids can be ordered from each plasmid page and will be shipped as bacterial stabs.
Original Publication
ScEnSor Kit for Saccharomyces cerevisiae Engineering and Biosensor-Driven Investigation of the Intracellular Environment Torello Pianale L, Olsson L. ACS Synth Biol. 2023 Aug 8. doi: 10.1021/acssynbio.3c00124. PMID: 37552581. Article
Description
The three-step (Build - Transform - Assess) ScEnSor (Saccharomyces cerevisiae Engineering + Biosensor) Kit is comprised of two modules that can be used independently or in combination.
The Genome-Integration Module comprises a set of backbone plasmids for the assembly of 1–6 transcriptional units (each consisting of a promoter, coding sequence, and terminator). The final Multi-Cassette plasmids are ready for efficient, marker-free and single-locus genome integration (in HO and/or X2 loci) using the CRISPR-Cas9 technology. Therefore, a total of 12 transcriptional units can be integrated into the genome (6 TUs per locus).
The Biosensor Module includes eight fluorescent reporters to investigate the intracellular environment of Saccharomyces cerevisiae (biosensors for ATP concentration, intracellular pH, oxidative stress, glycolytic flux, ribosome abundance, unfolded protein response, pyruvate metabolism, and ethanol consumption). The biosensor plasmids are ready to be integrated into the genome (X2 locus) using the same tools from the Genome Integration Module.

- The ScEnSor Kit allows the user to either: (1) use just the Biosensor Module in an already-developed Saccharomyces cerevisiae strain whose intracellular environment has to be further characterized; (2) use just the Genome-Integration Module to develop a new strain introducing new expression cassettes into the genome; (3) use both modules to develop a new strain and characterize its intracellular environment.
How to Cite this Kit
These plasmids were created by your colleagues. Please acknowledge the Principal Investigator, cite the article in which they were created, and include Addgene in the Materials and Methods of your future publications.
For your Materials and Methods section:
“The ScEnSor Kit was a gift from Lisbeth Olsson (Addgene kit #1000000215).”
For your Reference section:
ScEnSor Kit for Saccharomyces cerevisiae Engineering and Biosensor-Driven Investigation of the Intracellular Environment Torello Pianale L, Olsson L. ACS Synth Biol. 2023 Aug 8. doi: 10.1021/acssynbio.3c00124. PMID: 37552581.
ScEnSor Kit - #1000000215
- Resistance Color Key
Each circle corresponds to a specific antibiotic resistance in the kit plate map wells.
- Inventory
Searchable and sortable table of all plasmids in kit. The Well column lists the plasmid well location in its plate. The Plasmid column links to a plasmid's individual web page.
- Kit Plate Map
96-well plate map for plasmid layout. Hovering over a well reveals the plasmid name, while clicking on a well opens the plasmid page.
Resistance Color Key
Ampicillin | |
Kanamycin |